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Motivation
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Cooperative manipulation


• Large/Heavy payloads


• Challenging manoeuvres


• Bimanual tasks




Motivation
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Rigidity theory


• Understand relations in multi-agent networks


• Formation control


• Distance rigidity, bearing/angle rigidity 

Robot 1 Robot 2

Robot 3 Robot 4 



Motivation
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Rigid cooperative manipulation


• A group of robots grasp an object rigidly 


• Aim to achieve trajectory tracking by object’s COM


• How do we minimize internal forces? 


h1 h1

Internal forces: forces produced by the agents that do not contribute to the object’s motion



Distance and bearing rigidity in   
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• Characterise motions that preserve distances and bearings

    between agents


𝖲𝖤(𝟥)

p2, R2p1, R1

Robot 1 Robot 2

Robot 3 Robot 4 

𝒩 = {1,…, N}

γe,d =
1
2

∥pi − pj∥2, e ∈ ℰu

γe,b = R⊤
i

pi − pj

∥pi − pj∥
, e ∈ ℰ

γ𝒢 = [γ1,d, …, γ|ℰu|,d, γ⊤
1,b, …, γ⊤

1,|ℰ|]⊤

• Distance and bearing constraints:


Distance:


Bearing:


D&B function:

ℰ ⊆ {(i, j) ∈ 𝒩 : i ≠ j}

ℰu = {(i, j) ∈ ℰ : i < j}

• Multi-agent network:


Directed graph: 


Undirected graph: 




Infinitesimal motions: motion-perturbations of the agents that

leave the rigidity function       unchanged  


Infinitesimal distance and bearing rigidity in   
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𝖲𝖤(𝟥)

p2, R2p1, R1

Robot 1 Robot 2

Robot 3 Robot 4 

ℛ𝒢(x) = [ ∂γ𝒢

∂p1
,

∂γ𝒢

∂R1
, …,

∂γ𝒢

∂pN
,

∂γ𝒢

∂RN ]
Rigidity matrix 


γ𝒢

Trivial motions: motions that preserve the distances and bearings

of the system 


Infinitesimal motions: motions        produced by the nullspace 

of            , i.e.,  

x(t)

·γ𝒢 = ℛ𝒢(x(t)) ·x(t) = 0
ℛ𝒢(x)

D&B infinitesimally rigid system: 

infinitesimal motions are trivial motions  



Infinitesimal distance and bearing rigidity in   
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Infinitesimal motions: motion-perturbations of the agents that

leave the rigidity function       unchanged  
 p2, R2p1, R1

Robot 1 Robot 2

Robot 3 Robot 4 

γ𝒢

𝖲𝖤(𝟥)

𝖲𝖤(𝟥)

rank (ℛ̃𝒢) = 6N − 6

where
ℛ̃𝒢(x) = [ ∂γ𝒢

∂p1
, …,

∂γ𝒢

∂pN
,

∂γ𝒢

∂R1
, …,

∂γ𝒢

∂RN ]
is a column-permutation of ℛ𝒢

    The multi-agent system is D&B infinitesimally rigid in   

 if and only if  

ℛ𝒢(x) = [ ∂γ𝒢

∂p1
,

∂γ𝒢

∂R1
, …,

∂γ𝒢

∂pN
,

∂γ𝒢

∂RN ]
Rigidity matrix 




Cooperative manipulation modelling
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p2, R2p1, R1

• Object-robots coupling:


Velocities:


Forces:

v = G(x)⊤vo

ho = G(x)h

• Robot dynamics 

v = [ ·p⊤

1 , ω⊤
1 , …, ·p⊤

N, ω⊤
N ]⊤

·Ri = S(ωi)Ri

M(x) ·v + C(x, ·x)v + g(x) = u − h

Skew-symmetric 

matrix


Grasp matrix:
 G(x) = [Jo1
(x1)⊤, …, JoN

(xN)⊤] ∈ ℝ6×6N

Joi
(xi) = [ I3 −S(pi − po)

03×3 I3 ], i ∈ 𝒩
• Force decomposition: h = hm + hint

motion-inducing 

forces

internal

forces

(G(x)hint = 0)

vo = [ ·p⊤
o , ω⊤

o ]⊤

·Ro = S(ωo)Ro

Mo(x) ·vo + C(xo, ·xo)vo + go(x) = ho

• Object dynamics 




Internal forces based on the D&B rigidity matrix
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p2, R2p1, R1

• View the cooperative manipulation as a graph 

Interactions among all agents            complete graph 

 




Distance and bearing rigidity in   
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• Characterise motions that preserve distances and bearings

    between agents


• Multi-agent network:


Directed graph: 


Undirected graph: 


• Distance and bearing constraints:


Distance:


Bearing:


D&B function:

𝖲𝖤(𝟥)

p2, R2p1, R1

γe,d =
1
2

∥pi − pj∥2, e ∈ ℰu

γe,b = R⊤
i

pi − pj

∥pi − pj∥
, e ∈ ℰ

Robot 1 Robot 2

Robot 3 Robot 4 

ℰ ⊆ {(i, j) ∈ 𝒩 : i ≠ j}

ℰu = {(i, j) ∈ ℰ : i < j}

𝒩 = {1,…, N}

γ𝒢 = [γ1,d, …, γ|ℰu|,d, γ⊤
1,b, …, γ⊤

1,|ℰ|]⊤



Internal forces based on the D&B rigidity matrix
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• View the cooperative manipulation as a graph 

Interactions among all agents            complete graph p2, R2p1, R1

• Internal-force dynamics:
 M(x) ·v + C(x, ·x)v + g(x) = u − hint

• Unconstrained dynamics:
 M(x)α + C(x, ·x)v + g(x) = u

• Gauss’ principle:

·v = min ( ·v − a)⊤M(x) ( ·v − a)

s.t. ℛ𝒢
·v = − ·ℛ𝒢v hint = M

1
2(ℛ𝒢M− 1

2 )( ·ℛ𝒢v + ℛ𝒢a)

Internal forces:


• Cooperative manipulation rigidity constraints: 
γ𝒢 = 0
⇒ ℛ𝒢

·v = − ·ℛ𝒢(x)v

• Complete graph:         encodes rigid body motions  ℛ𝒢



Internal forces based on the D&B rigidity matrix
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p2, R2p1, R1

Internal forces:
{hint = M
1
2(ℛ𝒢M− 1

2 )( ·ℛ𝒢v + ℛ𝒢a)

α = M(x)−1(u − C(x, ·x)v + g(x))

The cooperative manipulation system is free of internal forces 

if and only if

·ℛ𝒢v + ℛ𝒢M−1(u − C ·v − g) ∈ null(ℛ⊤
𝒢)

Let          and           such that                                

and let


Then  

ℛ𝒢,1 ℛ𝒢,2 null(ℛ𝒢,1) = null(ℛ𝒢,2)

hint,i = M
1
2(ℛ𝒢,iM− 1

2 )( ·ℛ𝒢,iv + ℛ𝒢,ia), i ∈ {1,2}

hint,1 = hint,2



Cooperative manipulation via internal-force regulation
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Association of         and 
G(x) ℛ𝒢(x)

Theorem 1. 
Let     agents rigidly grasping an object, associated with

a grasp matrix        . Let also the agents be modelled by a

complete graph associated with a rigidity matrix                                 

Then 

ℛ𝒢(x)
G(x)

N

null(G(x)) = range(ℛ𝒢(x)⊤)

ho = G(x)h ℛ𝒢(x) = [ ∂γ𝒢

∂p1
,

∂γ𝒢

∂R1
, …,

∂γ𝒢

∂pN
,

∂γ𝒢

∂RN ]
v = G(x)⊤vo



Cooperative manipulation via internal-force regulation
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Relation between forces    and internal forces
h hint

Theorem 2. 
Let     agents rigidly grasping an object. The agent internal

forces       and forces     are related via 


N
hhint

hint = (I6N − MG⊤(GMG⊤)−1G)h

As opposed to                                              found in the literature 
hint = (I6N − G⊤(GG⊤)−1G)h



Cooperative manipulation via internal-force regulation
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Internal-force free distribution of a force to the agents


Theorem 3. 
Let     agents rigidly grasping an object. Let a desired force 

      to be applied to the object, distributed to the agents via

                  , where       is a right inverse of    , i.e.,  

Then

N

hint = 0 ⇔ G* = MG⊤(GMG⊤)−1

ho,d
hd = G*ho,d G* G GG* = I6

ho = G(x)h



Control design

16

• Tracking of reference trajectory                  
{
vd = [ ·p⊤

d , ω⊤
d ]⊤

·Rd = S(ωd)Rd

ep = po − pd

eo = 1
2 tr (I3 − R⊤

d Ro)
eR = S−1(R⊤

d Ro − R⊤
o Rd)

ex = [e⊤
p , 1

2(2 − eo)2 e⊤
R R⊤

o ]
⊤

ev = vo − vd

• Associated errors 


• Internal-force-free control law:


u = g + (CG⊤ + M ·G⊤)vo + G*(go + Covo)
+(MG⊤ + G*Mo)( ·vd − Kdev − Kpex)

hint = 0 ⇔ G* = MG⊤(GMG⊤)−1

p2, R2p1, R1



Simulations
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• Tracking of reference trajectory                  

object


reference

trajectory


pd(t) = po(0) +

0.2 sin(t + π
6 )

0.2 cos(t + π
6 )

0.09 + 0.1 sin(t + π
6 )

ηd(t) = 0.15

sin(t + π
6 )

sin(0.5t + π
6 )

sin(t + π
6 )

• Comparison among 
{ G*1 = MG⊤(GMG⊤)−1

G*2 = G⊤(GG⊤)−1

(proposed)


(related works)




Both schemes achieve tracking

18



Proposed control achieves zero internal forces
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Internal forces
 Input norms




Conclusion and future work
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Conclusion


• Cooperative manipulation via internal-force regulation


• Association of rigid cooperative manipulation with distance and bearing rigidity  


• Control design that guarantees regulation of internal forces


Future work


• Extension to tethered systems


• Decentralisation and dynamic uncertainty 



