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~Motivation

Cooperative manipulation

 Large/Heavy payloads

* (Challenging manoeuvres

e Bimanual tasks
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~Motivation

Rigid cooperative manipulation

* A group of robots grasp an object rigidly

* Aim to achieve trajectory tracking by object’s COM

e How do we minimize internal forces?

Internal forces: forces produced by the agents that do not contribute to the object’s motion
hl hl
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Distance and bearing rigidity in SE(3)

* Characterise motions that preserve distances and bearings

between agents 4/ = {1,..., N}

* Multi-agent network:

o Directed graph:

ECij)eN i#j}

o Undirected graph: & = {(i,j)) € &€ :i <)

e Distance and bearin

O Distance: 7.4 =

o Bearing: 7., =R,

)

g constraints:

lp; = pll°, e € 8,
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o D&B function: Y = [Vi,a> > V| |.d> V1 b2 -'-’7’1,|%|]
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Infinitesimal distance and bearing rigidity in SE(3)

Infinitesimal motions: motion-perturbations of the agents that

leave the rigidity function 7z unchanged . x L PRy

Rigidity matrix ; | |

0
9?5()6) = . o seus . J

S Q’

Infinitesimal motions: motions x(¢) produced by the nullspace

of %56()(:) : i.e., . .
Ve = Re(x(0))x(1) =0 Robot 1 Robot 2

Trivial motions: motions that preserve the distances and bearings
of the system

D&B infinitesimally rigid system: Robot 4 Robot 3
infinitesimal motions are trivial motions




Infinitesimal distance and bearing rigidity in SE(3)

Infinitesimal motions: motion-perturbations of the agents that

- a - . . A v ] J ,R
leave the rigidity function 7« unchanged PR e N 5. Pz 2
Rigidity matrix ; T '-
0 dry 0 5
9??()6) — yg ’ }/cg 9 oo ycg 9 ygg N
op; OR, opy ORy J v\
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The multi-agent system is D&B infinitesimally rigid in SE(3)

if and only if
rank (@?) _ 6N — 6 Robot 1 Robot 2

where ; o (') ><
—~ Y Ye OY Y
R5(x) = [—y - Z,— —g]

op; o aPN, OR, o ORy Robot 4 Robot 3

is a column-permutation of %«




- Cooperative manipulation modelling

V= [p}—’ a)lT’ . "p]-l\_f’ a)]—\fr ! Skew—symmetric
» Robot dynamics 4 R. = S(w,)R o S A S
M) + C(x, )v + g(x) = u — h 1T |
v, = 5. FooN )
» Object dynamics | R = S(w,)R, J W/
M (x)v, + C(x,, x,)v, + g,(x) = h, ~of o
* Object-robots coupling:
o Velocities: v=G(x)'v, Grasp matrix: G(x) = [ng(xl)T, ---,JON(XN)T c ROXON
o Forces: h,=Gx)h L —S(p,—p)
Jol-(xi)z [()3 Il 0]9 e N
e Force decomposition: h= h, + h,, 3%3 3
motion-inducing internal (G(x)h,, = 0)

e forces




“Internal forces based on the D&B rigidity matrix

* View the cooperative manipulation as a graph
O |nteractions among all agents » complete graph




Distance and bearing rigidity in SE(3)

* Characterise motions that preserve distances and bearings

between agents 4/ = {1,..., N}

* Multi-agent network:

o Directed graph: & C {(i,j) € N i #j}

o Undirected graph: & = {(i,j) € € :i < j}

* Distance and bearing constraints:

o Distance: 7, = ZHP,- - pill*, e € &,
o Bearing: 7,,=R' ———,e€ &
““ = p - pil

O D&B function: Y« =

: T
T T
V1o = V&, | V1> - 7’1,|%|]

p1, R, B - U |
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“Internal forces based on the D&B rigidity matrix

* View the cooperative manipulation as a graph
O |nteractions among all agents - complete graph

» Cooperative manipulation rigidity constraints: y« = 0
— %?V — = @?(X)V

» Complete graph: #£< encodes rigid body motions

* Internal-force dynamics: Mx)v+ Clx,x)v+gx)=u—nh,,

* Unconstrained dynamics: Mx)a + C(x,x)v + g(x) = u

* Gauss’ principle:

v =min (v — a) M(x) (v — a)

w 4 > ‘ b p R
PoRe e e T

Internal forces:

hie = M?(ReM™7)(Rgv + Rya)
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“Internal forces based on the D&B rigidity matrix

h =M (B M 7R P
Internal forces: { A 2( g 2>( gV + Kga)
& = M(x)_l(u - C(X ’ X)V - 8 ()C)) D1 Rl :, i;—- ............. N ;;7 L

Let ¢ 1and A, such that null(R ;) = null(Ry ,)
and let ] /
h - M%(%?,ZM_%) (% g,iv + ‘%?,ia)’ l E { 1,2} a4

int,1

Then hint,l — hint,Z

The cooperative manipulation system is free of internal forces
if and only if

@gv - %gM_l(u —Cv—9) e null(ﬂf;)




Cooperative manipulation via internal-force regulation

Association of G(x) and £ «(x)

Theorem 1.

Let N agents rigidly grasping an object, associated with
a grasp matrix G(x). Let also the agents be modelled by a
complete graph associated with a rigidity matrix £ .(x)
Then

NUll(G(x)) = range(@g(X)T)




Cooperative manipulation via internal-force regulation

Relation between forces / and internal forces 7,

Theorem 2.
Let N agents rigidly grasping an object. The agent internal
forces 4. . and forces h are related via

int

e = (Igy — MG (GMG")™'G)h

in

As opposed to 4, = (I,y— G'(GG")"'G)h found in the literature
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Cooperative manipulation via internal-force regulation

Internal-force free distribution of a force to the agents

Theorem 3.

Then

Let N agents rigidly grasping an object. Let a desired force
h, 4 to be applied to the object, distributed to the agents via
h, = G*h,,, where G* is aright inverse of G, i.e., GG* = I,

h,. =0s G*=MG' (GMG")™!
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- Control design

* Tracking of reference trajectory {

T TqT
vd: [pdaa)d]

Ra= SRy PR
€, =Po — Pa
e, =>tr (I, —RJR,)
» Associated errors { ¢r =9 “(RiR, = RjR)) J ’
i

€, =Vy — Vg

 |Internal-force-free control law:

u= g+ (CGT + MGT)VO T G*(go +C,v,)
+(MG' + G*M,)(v; — Kze, — K e,)

h,.=0s G*=MG'(GMG")™!
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Simulations

* Tracking of reference trajectory

. T object
0.2 sin(? 6)
p) =p (0) + 0.2 cos(t + %)
0.09 + 0.1 sin(z + %)
. T reference
st + ) trajectory
n () = 0.15 | sin(0.5¢ + %)
sin(t + <)

G;k = MG (GMG")™! (proposed)

e Comparison amon
P ° { Gf — GT(GGT)_1 (related works)
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- Both schemes achieve tracking
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- Proposed control achieves zero internal forces

Internal forces Input norms

100 { | = __200 l

| Prine (2) |

—Gr—G3
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~Conclusion and future work

Conclusion
* Cooperative manipulation via internal-force regulation

* Association of rigid cooperative manipulation with distance and bearing rigidity

* Control design that guarantees regulation of internal forces

Future work
* Extension to tethered systems

* Decentralisation and dynamic uncertainty
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