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Project RAPID
FoRmations of Heterogeneous Aerial Robots for ExPloratIon with Variable

Dynamics
Financed by: Regional project, Centrale Nantes

(PhD Julian Erskine, 2018-2021)

Purpose: Improve the performance of UAV fleet with
• Dynamic formations
• Uncontrolled environments
• Heterogenous groups of agents

Scientific objectives

Robust Control
3 Non-linear dynamics
3 Aggressive maneuvers
? Heterogeneous
capabilities

State Estimation
3 Design localisable
formations
3 Study formation
singularities
? Pose estimation by data
fusion

Dynamic-sensors fusion
7 Event-based cameras
? Heterogenous sensor
fusion
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Modelling of UAV Bearing Formations
What is a bearing?
The unit vector from Ai to Aj expressed in
Fi , which is a direction measurement on S2

βij = RT
i
pij
dij

(1)

where pij = pj − pi and dij = ||pij ||

Why bearing measurements
• Low cost sensor (camera)
• Onboard sensing in local frame
• Sufficient to define formation shape*

Problems

• *Unable to determine scale
• Singularities in particular configurations

Figure 1.1: Relationship between a camera and
a bearing sensor

Figure 1.2: Agent Ai measuring the bearing βij
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Formations may be modelled by a graph
G(V,E) consisting of a set of vertices V and
a set of edges E
• A vertex represents an agent
• An edge represents an exchange of

information
A formation is often described using a
directed (Fig. 1.3) sensing and an undirected
(Fig. 1.4) communication graph.

Formation Framework

• A framework F(G, q) associates a state (or
embedding) qi with each vertex Vi ∈ V

• The embedding of Vi is the state
qi = [pTi ψi ]T of Ai on R3 × S1

• Each edge Eij ∈ E corresponds to a
bearing measurement βij of Aj wrt Ai
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Figure 1.3:
Directed graph
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Bidirectional graph
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Figure 1.5: The embedding of the graph
from Fig. 1.3 in R3
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Control of UAV Formations

Primary tasks

• Agents converge to desired geometry
• Formation steers through space

Stack bearing and state vectors:
• q = [qT1 ...qTn ]T where n = ||V||
• β = [βT

1 ...β
T
m ]T where m = ||E||

Figure 2.1: Objective of formation control

Bearing kinematic model (in Fi):

β̇ = Bq̇ (2)

Nullspace of quadrotor bearing
kinematics:

M = ker(B) = span
{
vF , ψ̇F , ṡF

}
(3)

where vF ∈ R3 , ψ̇F ∈ S1 , and ṡF ∈ R1

corresponding to a spatial translation vF ,
a rotation ψ̇F of the formation about z0
and a change of scale ṡF of the
formation.

Works on the rigidity controller from
(Schiano et al., 2016) [1].
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Why do we need better control

What is better control?
• Faster formation convergence
• More agressive steering of formation
• Fewer local minima
• More versatile constraint handling

• Known and unknown trajectories
• Adapt to difficult environments
• Maintain formation through unstable states
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Solution: Model Predictive Control

A type of optimal control:
• Minimize objective function

as a function of the control
variable u(t), and the
predicted output x̂(t)

• Apply current control u(0)
• Re-run optimization with new

state measurement q0

min
u

Np−1∑
i=1

O(x̂, xd , u,∆t)

s.t. u ≤ u ≤ ū
Ceq(x̂, u, q̂) = 0
C(x̂, u, q̂) ≤ 0

(4)

Figure 3.1: Predicted state evolution x̂(t) for a given
control u(t)

Figure 3.2: MPC Input
constraints

Figure 3.3: MPC state
constraints
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MPC objective formulation

Minimize sum of objectives

O = Oβi + OM i + Oui (5)

• Multi-variable optimization
• Solution lies along
pareto-frontier

• Unique solution defined by
weights
◦ Qβ = 75
◦ QM = 25
◦ Qu = 5

• High terminal gain at k = Np
to reduce local minima

Bearing formation control objectives
• Minimize bearing error

Oβ i =
Np∑
k=1

eTβ i(k∆t)Qβ ieβ i(k∆t) (6)

• Minimize manoeuvring error

OM i =
Np∑
k=1

eTM i(k∆t)QM ieM i(k∆t)

(7)
• Minimize control input

Oui =
Np∑
k=1

eTui(k∆t)Quieui(k∆t) (8)
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MPC Experimental results

J. Erskine, R. Balderas-Hill, I. Fantoni, A. Chriette, Model Predictive for Dynamic Quadrorotor Bearing
Formations, ICRA 2021
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Formation control (PhD Julian Erskine, 2018-2021, RAPID)

Bearing formation controllers

• Second-order visual servoing controller
• Model predictive control
• Comparisons in constrained environments requiring dynamic maneuvering, with

field of view handling, environnement collision constraints and attributes such
as numerical conditioning and local minima

Study of Singularities

• Special formation configurations: is it possible to cross singularities ?
• Generic methodology that can simplify the identification of singularities in
arbitrarily large bearing formations of quadrotors

• By respecting certain constraints in the design of formations, find a class of
arbitrarily large formation graphs for which all singularities are known, and may
thus be avoided, guaranteeing the rigidity of the formation
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Flying parallel robot interacting with the environment
(PhD Shiyu Liu, 2019-2022)

• Background for aerial manipulation

Figure 4.1: A novel robotic platform
for aerial manipulation in Nguyen et al., 2018 [11] Figure 4.2: A novel flying parallel robot

with three drones in Six et al., 2018 [10]
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Introduction to Flying Parallel Robot

• Analogous to parallel mechanism

• Replacing fixed actuators by UAVs

Prototype of FPR

FPR prototype is composed of:
• A moving platform
• Three rigid legs attached to the platform by means of revolute joints
• A quadrotor attached to each leg by spherical joint
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Our challenge and motivation

Limitation:

• Dependence on high-rate exteroceptive measurements of robot state
→ Motion Capture (MOCAP) Systems

• Impracticality in outdoor and unmastered environments

Motivation:
• Reconstruction of robot state using only intrinsic measurements
• Control of multi-UAV parallel robots without any external localization system
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Two Decentralized Controllers

• C-Controller (communicating): ζ j are shared between the drones

• NC-Controller (non-communicating): Using of desired state ζdj for the
other drones on each drone i

χd , χ̇d → ζdj = [θdj , vdj ] ∀j 6= i

Figure 4.3: Diagram of C- and NC-Controller
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Experiments on Decentralized Control

Virtual camera:

• To emulate the relative pose pTi measured by onboard camera

• Adding Gaussian noise with a standard deviation of 2cm for translations
and 2◦ for rotations

Two experiments conducted:

• Control of internal configuration and platform orientation

• Precise positioning of the platform by teleoperation
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Experiments on Decentralized Control
• Exp.1: Control of internal configuration and platform orientation
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Experiments on Decentralized Control
• Exp.2: Precise positioning of the platform by teleoperation
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Robot-Environment Interaction

External effects:

• Modelling uncertainties
• Disturbances
• Interactions

Potential methods:

• Robust control (considering the external effects as bounded disturbances)

• Estimation of external effects (based on which a force control algorithm
can be designed)
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External Wrench Estimation

Dynamics of the FPR:

M(q)ν̇+C(q,ν)ν+g(q) = τ +τ e (9)

where:
• q, ν, ν̇ are the generalized position, velocity and acceleration coordinates, respectively.
• M(q), C(q, ν) and g(q) are the generalized inertia matrix, Coriolis matrix and gravity vector,

respectively.
• τ is the actuation wrench calculated by τ = JT f

with J Jacobian matrix, and f =
[
fT1 fT2 fT3

]T
a vector concatenating the

thrust forces of quadrotors.
• τ e is the external wrench.
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Momentum-based Wrench Estimation

Based on the computation of generalized momentum P = M(q)ν:

Ṗ = C(q,ν)Tν − g(q) + τ + τ e (10)

τ e = Ṗ − C(q,ν)Tν + g(q)− τ (11)
Applying a first-order filtering:

τ̂ e(t) =KO

[
P(t)−

∫ t

t0

(
C
(
q(t),ν(t)

)T
ν(t)− g

(
q(t)

)
+ τ (t)

+ τ̂ e(t −∆t)
)

dt −P(t0)
] (12)

where:
• KO is a positive-definite diagonal matrix for estimation gain.
• P(t) is the momentum at current time, with P(t0) = 0.
• τ̂ e(t) is the external wrench estimate at current time.
• τ̂ e(t −∆t) is the previous estimate.
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Impedance-based Interaction Control

A desired and virtual impedance system
(mass-spring-damper system):

Md(ν̇d − ν̇) + Bd(νd − ν) + Kdεq(qd , q) = ετ

(13)

where:
• Md , Bd and Kd are the positive-definite diagonal matrices respectively for the desired mass,

damping and stiffness of the impedance system.
• εq(qd , q) is the tracking error of the desired trajectory.

• ετ is the tracking error of the desired wrench, defined as

ετ = −τ̂ e − τ d
e (14)

Based on Eq.(13), an auxiliary control input can be defined:

u = ν̇ = ν̇d + (Md)−1
[
Bd(νd − ν) + Kdεq(qd , q)− ετ

]
(15)
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Impedance-based Interaction Control

By considering the dynamic model:

τ = M(q)ν̇d + M(q)(Md)−1
[
Bd(νd − ν) + Kdεq(qd , q)− ετ

]
+ C(q,ν)ν + g(q)− τ̂ e

(16)

The thrust forces of quadrotors can be finally computed:

f = J(q)−Tτ (17)

From the 3-dimensional thrust forces fi of each quadrotor, we can determine
• f d

i desired thrust magnitude
• hdi desired attitude (represented by unit quaternion)
⇒ attitude control of quadrotors
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Experimental Results

Liu, S., Fantoni, I., Chriette, A., Six, D., ”Wrench Estimation and Impedance-based Control applied to
a Flying Parallel Robot Interacting with the Environment,” IFAC IAV 2022, July, Prague
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Decentralization of FPR

Original idea:
• Use onboard measurements to reconstruct the robot state.
• Apply the control law in a decentralized way.

Onboard measurements:
• Camera (estimating relative pose)
• IMU (measuring drone’s orientation)

Robot state to be reconstructed:
• Leg angles (from relative position)
• Platform orientation (from orientation information)
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Detection of Aruco Markers (Ongoing)
• Apply the estimation and control methods in decentralized manner
• Continue to work on pose estimation by Aruco marker detection system to

accomplish fully MOCAP-free version of the work
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