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Formation movement in nature

Fish schools [1] Bird flocks [2]

Shee
[1] https://www.pinterest.com/pin/514888169895507939/ [2] https://nickfrosst.github.io/flock dynamics/
[3] https://new.qq.com/omn/20191009/20191009A0K7UZ00.html [4] https://www.youtube.com/watch?v=6bx5JUGVahk

p herds [3] Locust swarms [4]



Formation maintenance under bearing/angle constraints

Bearing-based Angle-based



Formation maintenance under bearing/angle constraints

Formation using bearings Formation using angles
A

Aligned coordinate system Local coordinate system



Sensing in formation flying

Roughly

e GPS like navigation;
e Vision sensors;

e IMU-like sensors

Possibly

e Vision;

e magnetite (like GPS);
e |IMU-like sensors?




Sensing and measurements

proaCh L3 o o o [
Position Displacement Distance Bearing
Property
Shape Absolute Relative : :
. L. > Distances Bearings
description Positions positions
Example pI = [0; 1] (pl - pz)* = [0, 1] ”pl - pZ” =1 (”pi _ pill) - [01 1]
Absolute Relative Local relative :
Measurement i i . Bearing
Position position position
Sensor : IMU+compass IMU-+radar IMU+compass
GPS recetver
(One case) +radar+camera +camera +camera

[1] Fax, J. A., & Murray, R. M. (2002). Graph laplacians gndf stabilization of vehicle formations. IFAC Proceedings Volumes.
[2] Anderson, B. D. O., Yu, C., Fidan, B., & Hendrickx, J. M. (2008). Rigid graph control architectures for autonomous formations.
IEEE Control Systems Magazine

[3] Franchi, A., Masone, C., Grabe, V., Ryll, M., Biilthoff, H. H., & Giordano, P. R. (2012). Modeling and control of UAV bearing
formations with bilateral high-level steering. The International Journal of Robotics Research.

[4] Zhao, S., & Zelazo, D. (2015). Bearing rigidity and almost global bearing-only formation stabilization. IEEE Transactions on
Automatic Control.

[5] Michieletto, G., Cenedese, A., & Zelazo, D. (2021). A unified dissertation on bearing rigidity theory. IEEE Transactions on Control
of Network Systems.



Angle meaurements

PP

» Angle measurements

> Sensors

Monocular camera with ag Bluetooth 5.1-based AOA
recognition [1] modules [2] modules [3]

[1] Kamphuis M. (2020) Angle-based formation control applied on a team of Nexus robots, Master Thesis, University of Groningen
[2] Texas Instruments, AOA Receiver and AOA Transmitter
[3] UWB Shield and Antenna board
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Angle rigidity
\

|
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Research problems:

Under which set of angle constraints the shape of the formation
is uniquely determined (rigid)?

[1] Jing, G., Zhang, G., Lee, H. W. J., & Wang, L. (2019). Angle-based shape determination theory of planar graphs with application to formation

stabilization. Automatica.
[2] Chen, L., Cao, M., & Li, C. (2021). Angle rigidity and its usage to stabilize multiagent formations in 2-D. IEEE Transactions on Automatic

Control.
[3] Buckley, 1., & Egerstedt, M. (2021). Infinitesimal shape-similarity for characterization and control of bearing-only multirobot formations. IEEE

Transactions on Robotics.



Angle rigidity
Starting from the 2D case:

flexible rigid rigid

flexible rigid



Definition Angularity

Distance rigidity Angle rigidity
| dyy
4

2
dy, 3

Graph G(V, &)

Define angularity A(V, A, p) = vertex set V+ angle set A+ position vector p
V: {172?374}7 ‘/4: {(27 173)7(37174)7(1737 2)7(]‘7374)}7 p: [p?7p%17pgj?pz}T
Ljik € [0,27) counterclockwise £143 = 60° £14'3 = 360° — 60°

[1] S. Franco, & W. Whiteley, Constraining plane configurations in CAD: circles, lines, and angles in the plane. SIAM Journal on
Discrete Mathematics, 2004.

[2] G. Jing, G. Zhang, H. W. J. Lee, & L. Wang, Angle-based shape determination theory of planar graphs with application to

formation stabilization, Automatica, 2019.

[3] L. Chen, M. Cao, & C. Li, Angle rigidity and its usage to stabilize multi-agent formations in 2D, IEEE Trans. Automat. Contr., 2021.



Definition Angle rigidity

We say two angularities Ag(V, A, p) and A;(V, A, p’) with the same V and
ACVYV XV xV=A{3G,4,k),i,j,k € V,i # j # k} are equivalent if

Lijk(pi, pj, pr) = Lijk(p;, p,p),) for (i,4,k) € A.
We say they are congruent if
Lijk(pi,pj, pr) = Lijk(p;, pj,py) for alli,j,k € V,or (i,5,k) € A"

An angularity Ag(V, A, p) is angle rigid if there exists an € > 0 such that
every angularity A;(V, A, p’) that is equivalent to Ay and satisfies ||[p’ — p|| < e,
is congruent to Ay.

& 1

3 . .. 3
(a) Non-rigid (b) Rigid (c) Non-rigid (d) Rigid

[1] L. Chen, M. Cao, & C. Li, Angle rigidity and its usage to stabilize multi-agent formations in 2D, IEEE Trans. Automat. Contr., 2021.



Definition Global angle rigidity

An angularity Ag(V, A, p) is angle rigid if there exists an € > 0 such that
every angularity A;(V, A, p’) that is equivalent to Ay and satisfies |[p’ — p|| < e,
is congruent to Ay.

If this satisfies for all e € R, Ag(V, A, p) is globally angle rigid.

3
1L,243-2)

37401 , Global angle rigidity, ",

R h l %

Angle rigid

2 1,-1
CL-1) (-1,-1)

AO ({]‘727 374}7 {(27173)7(37174)7(1737 2)7(17374)}7 [p?7pg7pg7pZ]T)
Small perturbation Large perturbation
Angle rigid NOT globally angle rigid

[1] L. Chen, M. Cao, &C. Li, Angle rigidity and its usage to stabilize multi-agent formations in 2D, IEEE Trans. Automat. Contr., 2021.



Construction method

Angle rigidity: 1
» Step 1: Start from a triangular shape
» Step 2: Add vertex 4 by two angles

Case 1: (214, 234 (Globally angle rigid)
Case 2: (214,243 ?

Distance rigidity

%

Step 1 Step 2: Case 1 Step 2: Case 2

[1] L. Henneberg, Die Graphische Statik der starren Systeme. Leipzig: B.G. Teubner, 1911.
[2] L. Chen, M. Cao, &C. Li, Angle rigidity and its usage to stabilize multi-agent formations in 2D, IEEE Trans. Automat. Contr., 2021.



Construction method

» Step 1: Start from a triangular shape
» Step 2: Add vertex 4 by two angles
Case 1: (x214, 234 (Globally angle rigid): Type I
Case 2: (214, @243 (Angle rigid): Type 11
Case 3: (X142, 243 (Globally angle rigid): Type I
» Step 3... 9

sk

14

Step 2: Case 2 Step 2: Case 3



Checking condition

~ Angle rigid?
(D Algebraic: Rank(R,(p)) = 2|V| — 4

A(V, A, p) " 1 @ Topological: A contains a Type-II construction.

_Globally angle rigid?
(D Topological: A contains a Type-I construction.

Main challenge: For a
minimally angle rigid
angularity, each vertex can
be associated with 5 angle

Angle rigidity’s constraints

topological, necessary
and sufficient conditions

More complicated
are still unknown

than distance rigidity case

[1] G. Laman, “On graphs and rigidity of plane skeletal structures,” Journal of Engineering mathematics, pp. 331-340, 1970.
[2] L. Chen, M. Cao, &C. Li, Angle rigidity and its usage to stabilize multi-agent formations in 2D, IEEE Trans. Automat. Contr., 2021.



Extension to 3D

) near-spherical

4 arc 12 surface
® D
1 /B\ 2
() 2D angle £142 (b) 3D angle £142
4
cone
1 )
(c) 2D angle £214 (d) 3D angle £214

» 3D Angle rigidity’s construction methods and checking conditions can be developed.

Rigidity of convex polyhedra?
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Background

» Cauchy's rigidity theorem for 3-dimensional polyhedral[1]

Theorem. If two 3-dimensional convex polyhedra P and P’ are
combinatorially equivalent with corresponding facets being congru-
ent, then also the angles between corresponding pairs of adjacent
facets are equal (and thus P is congruent to P’).

» Rigidity theorem for distance-constrained convex
polyhedra by Dehn, Aleksandrov, Gluck, etc[2]

Theorem 4.4. Let P be a compact convex polytope in three-space with all faces

triangles. Then the associated bar framework G(p) is infinitesimally rigid in

three-space.

How about angle constraints ?

[1] Aigner, Martin; Ziegler, Giinter M. (2014). Proofs from THE BOOK. Springer. pp. 71-74. ISBN 9783540404606.
[2] Connelly, R. (1993). Rigidity. In Handbook of convex geometry (pp. 223-271). North-Holland.



Polyhedra with triangular faces

» Rigidity theorem for angle-constrained convex polyhedra

Theorem The angularity A(V, A, p) obtained from a convex polyhedron P with
all faces being triangles is angle rigid.

Lemmas for the proof of the theorem: (a) Convex polyhedron with
triangular surfaces

Lemma 1[1] If all angles on the faces of a convex polyhedron P remain constant
when A is perturbed, then all the dihedral angles of P remain constant.

Lemma 2[1] If all edge lengths, angles in faces and dihedral angles of a convex
polyhedron [P remain constant under a perturbation of A, then the perturbation
must be a translation or rotation of A.

[1] Alexandrov, A. D. (2005). Convex polyhedra (Vol. 109). Berlin: Springer.



Polyhedra with polygonal faces

Definition 1 (Polygonal triangulation[1]) Polygonal triangulation is the de-
composition of a polygon into a set of triangles where any two of these triangles
either do not intersect at all or intersect at a common vertex or edge.

Definition 2 (Surface triangulation) Surface triangulation for a polyhedron
P is the decomposition of the surface of IP using polygonal triangulation for each
face of P and at the same time any two decomposed triangles from two faces of
P either do not intersect at all or intersect at a common vertex or edge.

J1

." 8

(a) Polygonal triangulation (b) Surface triangulation

Theorem A convex triangulated polyhedral angularity AV UV, A, [p",p'"]")
without any vertex of V' lying in the interior of a face of P is angle rigid.

[1] Connelly, R. (1993). Rigidity. In Handbook of convex geometry (pp. 223-271). North-Holland.
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Formation control in 2D

pz:u’mzzla 7N7

avjix, = arccos(b];bix)

bij = b= B ] eN; @5, § S 0%1“
Ipj — ol “

] 4
5\{254
¥ . I
Problem 1 Given feasible desired angles ype-
*k k *k k Xk k Xk
Ja= {043127 1235 X231y Aog1, X340, " " 5 G Ny O%Nq;g} (1)

design control law u; by using local direction measurements b;;,j € N; to achieve

limtﬁoo(ajik(t) — Oé;k,bk) = 0, (j,i, k) cA (2)

[1] L. Chen, M. Cao, &C. Li, Angle rigidity and its usage to stabilize multi-agent formations in 2D, IEEE Trans. Automat. Contr., 2021.



Formation control in 2D

."V N il — O [
l 'ty |
| ov : x !
I ’,'

U; = _(8pi)T = f(lij, bij, ik, bjg)
Pi = Ui =— Z(j e ik = i) (big +bik). e e (@-
Bisector moving rule \* s, ‘
pj —_— pz T 0!254
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Formation control in 2D

Stablllty analysis

~e
[ 6y ] [ Fi(es) 0 0 07 1 [es]
€2 Hy(es) Fy(eq) 0 0 €4
. o 841 . - PP PP P . . .« o . .« .
€a - é42 — A(ea)ea - Hz(el) L. Fz(ez) L O ez
[ CN2 Hy(en) -+ o oo Fyl(en)| |en

Theorem 1 The nonlinear angle error dynamics é, = A(e,)e, is locally expo-

nentially stable around the desired equilibrium e, = 0.

Proof Linearization — 8[Aéia)€“] e —0 is Hurwitz.

Theorem 2 The first three agents’ angle error dynamics é; = Fi(es)es is almost

globally stable.
Proof Poincare-Bendixson Theorem.

[1] L. Chen, M. Cao, &C. Li, Angle rigidity and its usage to stabilize multi-agent formations in 2D, IEEE Trans. Automat. Contr., 2021.



Formation control in 2D
Problem 2

o= Jim (ay(t) — of) = 0. lim (5i(t) — 07 () — v} (1) — v3(1)) = 0
Desired translational, rotational, and
scaling velocity

u; = — ki(o; — o — %)bz’(i—l—l) — ki(oi —aj — %)bi(i—l)

= — ki(a; — o) [bigit1) + bii—1)] + [ibigir1) + fibii—1)]

=Ufi + Umi (1)
Problem 3
pi = wi,  m (qir(t) — ajye) =0, lim p(t) =0
u; = —kspi — Z(jﬂ.,k)eA (ajik — ir) (bij + bik) (2)

[1] L. Chen, H. Garcia de Marina, M. Cao, Maneuvering formations of mobile agents using designed mismatched angles. IEEE Trans.
Automat Contr., 2021.

[2] L. Chen, M. Shi, H. Garcia de Marina, M. Cao, Stabilizing and maneuvering angle rigid multi-agent formations with double-
integrator agent dynamics, IEEE Trans. Control of Network Systems, 2022.



Formation control in 3D

Ll o el -t

Locally stable control law A convex combination
wi(t) = —(Qi—1)ifi+1)(t) = o _q3p017) (V10ifi—1) (8) + Y2bifi1) (1)), 0 = 1,2, 3

where v > 0,79 > 0 and v; +v2 = 1.

Pr — Pi
, =k i
| P —pi |l

Globally stable control law

N

lp;—pill .
. k _ * J ! Pi
ug = —(123 — A793)ba3, U3z = —(ao31 — a537)b32



Formation control in 3D

Type [ Pursuing rule ——  More efficient
% * i
Ui :(aijle - Oéijljz)bij2 + (Oéijﬂ'l - aiijl)bijl “
+ (Qijajs — Q55 )bijs, 4 <1< N jl e

Ne
]2

Type-1I  Bisector moving rule

U; = —(Oéjlz'jQ — Oé;lijQ)(bijl + bij2) - (O‘jzijs o &;2ij3)(bij2 + bij3)

— (i, — a5, ) (bijy +bij5,), 4<i< N

e 3
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Concluding remarks

Formation flying for robotic teams relies on the enabling sensing
technology.

Different rigidity properties of formations arise when the constraints are
in terms of positions, angles and bearings.

Sufficient conditions can be established for angle and global angle
rigidity.

Formation control laws can be further developed with the help of angle
rigidity graph theory.

30



Some selected recent publications from my group on related topics

Angle rigidity and its usage for formation maneuvering:

“Angle rigidity and its usage to stabilize multi-agent formations in 2D,” L. Chen, M.
Cao and C. Li. I[EEE Trans. on Automatic Control, V66, Issue 8, 3667-3681, 2020

“Maneuvering formations of mobile agents using designed mismatched angles,” L.
Chen, H. Garcia de Marina, and M. Cao. I[EEE Trans. on Automatic Control, V67,
Issue 4, 1655-1668, 2021

“Stabilizing and maneuvering angle rigid multi-agent formations with double-
integrator agent dynamics,” L. Chen, M. Shi, H. Garcia de Marina and M. Cao.
To appear, IEEE Trans. on Control of Network Systems, 2022

“‘Angle rigidity for multi-agent formations in 3D,” L. Chen and M. Cao. |[EEE
Trans. on Automatic Control, conditionally accepted, 2022

--- The end ---
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