On the Links between Bearing-Rigid Formations and Parallel Robots Application to Singularity Analysis of Rigid Bearing-Based Formations of Quadrotors

Julian Erskine, <u>Sébastien Briot</u>, Isabelle Fantoni and Abdelhamid Chriette

> ECC 2022 Workshop Rigidity Theory applied to Dynamic Systems: from Parallel Robots to Multi-Agent Formations

> > July 12 2022

The importance of rigidity

Rigidity of frameworks

 "Rigidity theory studies [...] whether two frameworks with the same inter-neighbor bearings have the same shape" [Zhao & Zelazo IEEE TAC 2016]

The importance of rigidity

Rigidity of frameworks

 "Rigidity theory studies [...] whether two frameworks with the same inter-neighbor bearings have the same shape" [Zhao & Zelazo IEEE TAC 2016]

Framework singularities

 "A particular graph will be rigid or flexible in ℝⁿ for almost all locations of its vertices" [Asimow & Roth TAMS 1978]

The importance of rigidity

Rigidity of frameworks

 "Rigidity theory studies [...] whether two frameworks with the same inter-neighbor bearings have the same shape" [Zhao & Zelazo IEEE TAC 2016]

Framework singularities

 "A particular graph will be rigid or flexible in ℝ" for almost all locations of its vertices" [Asimow & Roth TAMS 1978]

Figure: A singularity of a 3-UAV formation

Figure: A singularity of a 4-UAV formation [Pasquetti et al. CORR 2019]

Singularities of formations

Singularities appearing in the bearing rigidity matrix

• a huge challenge

• Issues with singularities: loss of controllability, of accuracy, impossibility to use pose estimation algorithms nearby

Singularities of formations

Singularities appearing in the bearing rigidity matrix

• a huge challenge

• Issues with singularities: loss of controllability, of accuracy, impossibility to use pose estimation algorithms nearby

Determining the singularity cases stays an open problem

roduction					
Introdu	uction				

The "Hidden Robot Concept": a tool for singularity analysis of rigidity matrices

- A tool made first for visual servoing problems [Briot et al IEEE TRO 2015, Briot et al IEEE TRO 2017]
- Then transferred to the analysis of **singularities of (bearing) rigidity matrices** [Briot & Robuffo Giordano ASME JMR 2019]

Int 00

oduction			
Introd	uction		

The "Hidden Robot Concept": a tool for singularity analysis of rigidity matrices

- A tool made first for visual servoing problems [Briot et al IEEE TRO 2015, Briot et al IEEE TRO 2017]
- Then transferred to the analysis of **singularities of (bearing) rigidity matrices** [Briot & Robuffo Giordano ASME JMR 2019]

Basic idea

Intr

- The Inverse Jacobian matrix of a virtual parallel robot \Rightarrow a basis of the Formation Rigidity Matrix
- Many tools for finding geometric configurations leading to singularities of line systems: Screw Theory [Hunt book 1979], Grassmann geometry [Merlet IJRR 1989], Grassmann-Cayley algebra [Kanaan et al IEEE TRO 2009]

ase study O Conclusions 0

ase study

Conclusions

ase study

Conclusions O

Conclusions 0

ase study

Conclusions

Conclusions 0

ase study 0 Conclusions O

A simple graph example

ase study

Conclusions O

A simple graph example

ase study

Conclusions O

A simple graph example

We virtually open the mechanism in A_3 + we fix one prismatic joint to avoid the scaling translation

Chain $A_2A_1A_3$

• A single twist $\$_1$ allowed in A_3 :

 $\mathbf{\$}_1 = [\mathbf{p}_{13}^{\mathcal{T}} \, \mathbf{0}]^{\mathcal{T}}$ translation along $\overrightarrow{A_1 A_3}$

As a result, two wrenches constrain ξ₁ and ξ₂ the motion at A₃ (ξ^T_i\$₁ = 0)

$$\boldsymbol{\xi}_1 = [\mathbf{p}_{13}^{\perp \ T} \ \mathbf{0}]^T$$
 force along $\overrightarrow{A_1 A_3}^T$

 $\boldsymbol{\xi}_2 = [0 \, 0 \, 1]^T$ moment around \boldsymbol{z}

A simple graph example

We virtually open the mechanism in A_3

Chain A_2A_3

- Two twists $\$_2$ and $\$_3$ allowed in A_3 :
 - $\mathbf{\$}_2 = [\mathbf{p}_{23}^T \ \mathbf{0}]^T \text{ translation along } \overrightarrow{A_2 A_3}$
 - $\mathbf{\$}_3 = [0 \ 0 \ 1]^T$ rotation around \boldsymbol{z}
- As a result, a single wrench ξ₃ constrains the motion at A₃ (ξ₃^T \$_j) = 0)

$$\boldsymbol{\xi}_3 = [\mathbf{p}_{23}^{\perp} \ ^{\mathcal{T}} \ 0]^{\mathcal{T}}$$
 force along $\overrightarrow{A_2 A_3^{\perp}}$

Singularities of quadrotor formations

ase study

Conclusions O

A simple graph example

At the end, mechanism constraint wrench system \mathcal{W} (\equiv basis of the rigidity matrix)

$$\mathcal{W} = \begin{bmatrix} \boldsymbol{\xi}_1 \, \boldsymbol{\xi}_2 \, \boldsymbol{\xi}_3 \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{p}_{13}^{\perp} & \mathbf{p}_{23}^{\perp} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & 1 \end{bmatrix}$$

The system is rigid iff W is full rank rank(W) = 3

Conclusions O

A simple graph example

At the end, mechanism constraint wrench system \mathcal{W} (\equiv basis of the rigidity matrix)

$$\mathcal{W} = [\boldsymbol{\xi}_1 \, \boldsymbol{\xi}_2 \, \boldsymbol{\xi}_3] = egin{bmatrix} \mathbf{p}_{13}^{\perp} & \mathbf{p}_{23}^{\perp} & \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix}$$

 \mathcal{W} and **and the rigidity matrix** are singular when locally, rank(\mathcal{W}) < 3, i.e. when

- **p**₁₃ is colinear with **p**₂₃,
- In other words, when A_1 , A_2 , A_3 are aligned.

ase study

Conclusions O

A second graph example

ase study 0 Conclusions

A second graph example

ase study

Conclusions

A second graph example

We virtually open the mechanism in A_2 + we fix one prismatic joint to avoid the scaling translation

Chain $A_3A_1A_2$

• Two twists $\$_1$ and $\$_2$ allowed in A_1 :

$$\mathbf{\$}_1 = [\mathbf{p}_{12}^T \ \mathbf{0}]^T \text{ translation along } \overrightarrow{A_1 A_2}$$
$$\mathbf{\$}_2 = [0 \ 0 \ 1]^T \text{ rotation around } \mathbf{z}$$

 As a result, a single wrench constrains ξ₁the motion at A₁ (ξ^T_i\$₁ = 0)

$$\boldsymbol{\xi}_1 = [\mathbf{p}_{12}^{\perp \ T} \ \mathbf{0}]^T$$
 force along $\overrightarrow{A_1 A_2^{\perp}}$

Conclusions O

A second graph example

We virtually open the mechanism in A_2 + we fix one prismatic joint to avoid the scaling translation

Chain $A_3A_1A_2$

• Two twists \$1 and \$2 allowed in A1:

 $\mathbf{\$}_1 = [\mathbf{p}_{12}^T \ \mathbf{0}]^T \text{ translation along } \overrightarrow{A_1 A_2}$ $\mathbf{\$}_2 = [\mathbf{0} \ \mathbf{0} \ \mathbf{1}]^T \text{ rotation around } \mathbf{z}$

• or also at A_2

$$\boldsymbol{\xi}_1 = [\boldsymbol{\mathsf{p}}_{12}^{\perp \ T} \ (\boldsymbol{\mathsf{p}}_{12}^{\mathsf{T}} \boldsymbol{\mathsf{p}}_{12})]^{\mathsf{T}}$$

8 of 15

A second graph example

We virtually open the mechanism in A_2

Chain A_3A_2

- Two twists $\$_3$ and $\$_4$ allowed in A_3 :
 - $\mathbf{\$}_3 = [\mathbf{p}_{32}^T \, \mathbf{0}]^T$ translation along $\overrightarrow{A_3 A_2}$
 - $\mathbf{\$}_4 = [0 \ 0 \ 1]^T$ rotation around \boldsymbol{z}
- As a result, a single wrench ξ₃ constrains the motion at A₃ (ξ₃^T \$_j) = 0)

$$oldsymbol{\xi}_2 = [oldsymbol{p}_{23}^{\perp} \, {}^{\mathcal{T}} \, 0]^{\mathcal{T}}$$
 force along $\overrightarrow{A_3 A_2^{\perp}}$

Conclusions O

A second graph example

At the end, mechanism constraint wrench system \mathcal{W} (\equiv basis of the rigidity matrix)

 $\mathcal{W} = [\boldsymbol{\xi}_1 \, \boldsymbol{\xi}_2]$

${\mathcal W}$ is of rank 2:

One unconstrained motion (in the nullspace of – or reciprocal to – \mathcal{W})

Hidden Robot and Singularity Analysis

Slides Julian Erskine

The Hidden Robot

Strategy for a generalized singularity analysis

Objectives

- X Analyse all singularities
- Analyse many singularities
- Apply to many formations
- Graph space results

What does this do?

- Can we find all $S^{\mathcal{L}}$?
- Can we find all $\mathcal{S}^{\mathcal{F}}$
- Is $S^{\mathcal{L}} \cup S^{\mathcal{F}}$ comprehensive?

Local analysis

- Apply to each agent A_i
- Assume all agents are fixed

Figure 5.9 – Local neighbourhood of A_i

 $\mathcal{S}^{\mathcal{L}}_{i}$: Set of embeddings where $\hat{\mathcal{A}}_{i}$ moves *wrt* others

Subformation analysis

- Bi-partition the formation
- Assume one partition fixed

Figure 5.10 – Subformations ${\cal F}_1$ and ${\cal F}_2$

 $\mathcal{S}^{\mathcal{F}}$: Set of embeddings where \mathcal{F}_1 moves wrt \mathcal{F}_2

< ∃⇒

The Hidden Robot

Strategy for a generalized singularity analysis

Objectives

- X Analyse all singularities
- Analyse many singularities
- Apply to many formations
- Graph space results

What does this do?

- Can we find all $S^{\mathcal{L}}$?
- Can we find all $\mathcal{S}^{\mathcal{F}}$
- Is $S^{\mathcal{L}} \cup S^{\mathcal{F}}$ comprehensive?

Local analysis

- Apply to each agent A_i
- Assume all agents are fixed

Figure 5.9 – Local neighbourhood of A_i

 $\mathcal{S}^{\mathcal{L}}_{i}$: Set of embeddings where $\overset{}{\mathcal{A}_{i}}$ moves wrt others

Subformation analysis

- Bi-partition the formation
- Assume one partition fixed

Figure 5.10 – Subformations ${\cal F}_1$ and ${\cal F}_2$

The Hidden Robot

Strategy for a generalized singularity analysis

Objectives

- X Analyse all singularities
- Analyse many singularities
- Apply to many formations
- Graph space results

What does this do?

- Can we find all $S^{\mathcal{L}}$?
- Can we find all $\mathcal{S}^{\mathcal{F}}$
- Is $S^{\mathcal{L}} \cup S^{\mathcal{F}}$ comprehensive?

Local analysis

- Apply to each agent A_i
- Assume all agents are fixed

Figure 5.9 – Local neighbourhood of A_i

 $\mathcal{S}^{\mathcal{L}}_{i}$: Set of embeddings where $\overset{}{\mathcal{A}_{i}}$ moves wrt others

Subformation analysis

- Bi-partition the formation
- Assume one partition fixed

Figure 5.10 – Subformations \mathcal{F}_1 and \mathcal{F}_2

```
\mathcal{S}^{\mathcal{F}} : Set of embeddings where \mathcal{F}_1 moves wrt \mathcal{F}_2
```

. ⊒ →

Graph edge primitives

Apply mechanical constraints to graph edges

J. Erskine

PhD Thesis Defence

Local singularities - two neighbours

Building a singularity dictionary

- Find local graph types
- Analyse the 6 hidden robots
- Use set-based analysis (e.g. $\mathcal{S}_{\mathbb{BO}}^{\mathcal{L}} \supset \mathcal{S}_{\mathbb{BB}}^{\mathcal{L}}$)

03/12/2021

Building a singularity dictionary

- Find local graph types
- Analyse the 6 hidden robots
- Use set-based analysis (e.g. $\mathcal{S}_{\mathbb{BO}}^{\mathcal{L}} \supset \mathcal{S}_{\mathbb{BB}}^{\mathcal{L}}$)

Table 3 – Singularities for of $\mathcal{A}_{\it i}$ connected to agents $\mathcal{A}_{\it j}$ and $\mathcal{A}_{\it k}$

Туре	Wrenches	Singular Configuration ${\mathcal S}_{\operatorname{type}}^{\mathcal L}$	Singular Twist $\mathcal{T}_{\mathcal{L}type}$
$\mathcal{L}_{\mathbb{BB}}$	$\mathcal{W}_{\mathbb{B}j} \cup \mathcal{W}_{\mathbb{B}k}$	1. $S_{\mathbb{BB}}^{\mathcal{L}}$	1. $\mathcal{T}_{\mathcal{LBB}}$ (see Eq. (??))
$\mathcal{L}_{\mathbb{BO}}$	$\mathcal{W}_{\mathbb{B}j} \cup \mathcal{W}_{\mathbb{O}k}$	1. $S_{\mathbb{BB}}^{\mathcal{L}}$	1. $\mathcal{T}_{\mathcal{LBB}}$
$\mathcal{L}_{\mathbb{BI}}$	$\mathcal{W}_{\mathbb{B}j} \cup \mathcal{W}_{\mathbb{I}k}$	1. $\mathcal{S}_{\mathbb{BB}}^{\mathcal{L}}$ 2. \mathbf{p}_{ij} is vertical	1. $\mathcal{T}_{\mathcal{L}^{\mathbb{BB}}}$ 2. $\mathbf{v}'(\mathbf{z}_0, \mathbf{p}_i)$
$\mathcal{L}_{\mathbb{OI}}$	$\mathcal{W}_{\mathbb{O}j} \cup \mathcal{W}_{\mathbb{I}k}$	1. $\mathcal{S}_{\mathbb{BI}}^{\mathcal{L}}$ 2. \mathbf{p}_{ij} and \mathbf{p}_{ik} are horizontal	$\begin{array}{c} 1. \ \mathcal{T}_{\mathcal{L}\mathbb{BI}} \\ 2. \ \mathbf{v}'(\mathbf{z}_0, \mathbf{c}) \end{array}$
$\mathcal{L}_{\mathbb{OO}}$	$\mathcal{W}_{\mathbb{O}j} \cup \mathcal{W}_{\mathbb{O}k}$	1. $S_{\mathbb{BO}}^{\mathcal{L}}$ 2. \mathbf{p}_{ij} and \mathbf{p}_{ik} are horizontal 3. \mathbf{p}_{jk} is vertical	1. $\mathcal{T}_{\mathcal{L}\mathbb{B}\mathbb{O}}$ 2. $\mathbf{v}^{r}(\mathbf{z}_{0}, \mathbf{c})$ 3. $\mathbf{v}^{r}(\mathbf{z}_{0}, \mathbf{p}_{j})$
$\mathcal{L}_{\mathbb{II}}$	$\mathcal{W}_{\mathbb{I}j} \cup \mathcal{W}_{\mathbb{I}k}$	1. $S_{\mathbb{BI}}^{\mathcal{L}}$ 2. All configurations	1. $\mathcal{T}_{\mathcal{L}\mathbb{BI}}$ 2. $\mathbf{v}'(\mathbf{z}_0, \mathbf{p}_i)$

PhD Thesis Defence

< ∃ →

Local singularities - *n* neighbours

Generalization of local analysis

- Infinite number of local hidden robots
- More measurements increases constraints
- There is a closed set of local singularities
- Singularities of all local formations of type $\mathbb{B}^{a}\mathbb{O}^{b}\mathbb{I}^{c}$ where $a + b + c \geq 3$
 - All edges are co-linear
 - **2** Only \mathbb{I} edges are non-vertical
- Singularities of local formations of type \mathbb{O}^b
 - $\begin{array}{l} \bullet \quad \mathcal{A}_i \text{ and } \mathcal{A}_1 \cdots \mathcal{A}_m \text{ lie on a horizontal circle} \\ \bullet \quad \text{Agents } \mathcal{A}_1 \cdots \mathcal{A}_m \text{ lie on a vertical line.} \end{array}$

∃ >

Subformation singularities - two edges

Local analysis is not enough

- Sufficient to imply flexibility
- Insufficient to imply rigidity

Subformation singularities

- Assume both subformations are rigid
 - Fix one subformation
 - Other is free in translation, yaw, scale
- Difficult compared to local analysis

< ∃→

Subformation Singularities

Subformation singularities - two edges

Local analysis is not enough

- Sufficient to imply flexibility
- Insufficient to imply rigidity

Subformation singularities

- Assume both subformations are rigid
 - Fix one subformation
 - Other is free in translation, yaw, scale
- Difficult compared to local analysis

Figure 5.20 – Two subformations \mathcal{F}_A and \mathcal{F}_B connected by two distinct graph edges

. ⊒ →

Hidden Robot and Singularity Analysis

Table: Classification of all bi-partitioned subformation singularities with two edges

Туре	Singular Configuration S_{type}^{F}
$\mathbb{B}\mathbb{B}$	1: Lines A_1B_1 and A_2B_2 intersect
	2: Lines A_1B_1 and A_2B_2 are colinear
	3: Lines A_1B_1 and A_2B_2 are vertical and superposed
BO	1: $\mathcal{S}_{\mathbb{BB}}^{\mathcal{F}}$
	2: Line A_1B_1 is vertical and intersects B_2

Subformation Singularities

Subformation singularities - three edges

Subformation we can solve

- \bullet Contains $\mathcal{F}_{_{\mathbb{B}\mathbb{B}}}$ or $\mathcal{F}_{_{\mathbb{B}\mathbb{O}}}$ as subset
- Can find all singularities

Subformation we cannot solve

- $\bullet \ \mathcal{F}_{_{\bigcirc \bigcirc \bigcirc \bigcirc}}$ and $\mathcal{F}_{_{\mathbb{I} \bigcirc \bigcirc}}$
- Can find some singularities
- Cannot show that there are not others

Figure 5.21 - All three-edge subformations. Prismatic joints containing a circle have coupled twist magnitudes.

Hidden Robot and Singularity Analysis

Table: Classification of all bi-partitioned subformation singularities with two edges

Туре	Singular Configuration S_{type}^F		
BBB	1: All lines $A_i B_i$ intersect 2: All lines $A_i B_i$ are colinear		
	3: All lines $A_i B_i$ vertical, superposed		
OBB	1: $\mathcal{S}_{\mathbb{BBB}}^{\mathcal{F}}$ 2: B_3 aligned with A_1B_1 , A_iB_i , $i \in 2, 3$ superposed		
OOB	1: $\mathcal{S}_{\mathbb{OBB}}^{\mathcal{F}}$ 2: Line A_3B_3 vertical, intersects B_1 or B_2		
IOB	1: $\mathcal{S}_{\mathbb{OBB}}^{\mathcal{F}}$ 2: Line A_3B_3 vertical, intersects A_1 and B_2		
IOO	1: $\mathcal{S}_{\mathbb{IOB}}^{\mathcal{F}}$ 2: $A_1 B_2 B_3$ aligned and vertical		
	3: All agents A_i , $B_i \forall i$ lie on a common horizontal plane		
000	1: $\mathcal{S}_{\mathbb{OOB}}^{\mathcal{F}}$ 2: $B_i \forall i$ are vertical superposed		
	3: All agents A_i , $B_i \forall i$ lie on a common horizontal plane		
	4: F_A and F_B are bearing-congruent and lie on their common respective horizontal planes.		

Hidden Robot and Singularity Analysis

With this analysis

- Able to analyze many singularities in a formation
- Impossible to analyze all singularities for a given arbitrary formation
- BUT possibility to analyze all singularities of properly designed formations
 - simple small sub-formations in which we can easily know all singularities
 - $\circ~$ associated together with 2 or 3 edges in order to form big-sized graphs

ingularities of quadrotor formations

Case study ●0 Conclusions O

Case studies with 18 drones

ingularities of quadrotor formations

Case study

Conclusions 0

Case studies with 18 drones

Component	$\#$ of \mathcal{S}^{L}	$\# ext{ of } \mathcal{S}^{\textit{F}}$
$\mathcal{S}_{\mathcal{A}}$	3	
\mathcal{S}_B	4	
$\mathcal{S}_{A/B}^{F}$	-	
\mathcal{S}_{C}	5	
$\mathcal{S}^{F}_{AB/C}$	-	
\mathcal{S}_D	6	
$\mathcal{S}^{F}_{ABC/D}$	-	
Total	18	

• \mathcal{F}_A : BB, BO, BI

- \mathcal{F}_B : $\mathbb{BOI} \times 3$, \mathbb{BBB}
- \mathcal{F}_C : BOI × 3, OII, BO
- \mathcal{F}_D^* : $\mathbb{BB} \times 4$, \mathbb{BO} , \mathbb{BI}

Hidden robot concept: simple examples

ingularities of quadrotor formations

Case study ●0 Conclusions 0

Case studies with 18 drones

Component	$\#$ of \mathcal{S}^{L}	$\# ext{ of } \mathcal{S}^{\textit{F}}$
$\mathcal{S}_{\mathcal{A}}$	3	0
\mathcal{S}_B	4	0
$\mathcal{S}_{A/B}^{F}$	-	
Sc	5	0
$\mathcal{S}^{F}_{AB/C}$	-	
S_D	6	1
$\mathcal{S}^{\sf F}_{ABC/D}$	-	
Total	18	

• \mathcal{F}_D : OII

Hidden robot concept: simple examples 0000 ingularities of quadrotor formations

Case study ●0 Conclusions

Case studies with 18 drones

Component	$\#$ of \mathcal{S}^{L}	$\# ext{ of } \mathcal{S}^{\textit{F}}$
$\mathcal{S}_{\mathcal{A}}$	3	0
\mathcal{S}_B	4	0
$\mathcal{S}_{A/B}^{F}$	-	1
S_{C}	5	0
$\mathcal{S}^{F}_{AB/C}$	-	
S_D	6	1
$\mathcal{S}^{F}_{ABC/D}$	-	
Total	18	

• \mathcal{F}_{AB} : OOI

Hidden robot concept: simple examples 0000 ingularities of quadrotor formations

Case study ●0 Conclusions O

Case studies with 18 drones

Component	$\#$ of \mathcal{S}^{L}	$\# ext{ of } \mathcal{S}^{\textit{F}}$
$\mathcal{S}_{\mathcal{A}}$	3	0
\mathcal{S}_B	4	0
$\mathcal{S}_{A/B}^{F}$	-	1
Sc	5	0
$\mathcal{S}^{\sf F}_{AB/C}$	-	1
S_D	6	1
$\mathcal{S}^{\sf F}_{ABC/D}$	-	
Total	18	

• \mathcal{F}_{ABC} : \mathbb{BB}

Hidden robot concept: simple examples 0000 ingularities of quadrotor formations

Case study ●0 Conclusions O

Case studies with 18 drones

Component	$\#$ of \mathcal{S}^{L}	$\# ext{ of } \mathcal{S}^{\textit{F}}$
$\mathcal{S}_{\mathcal{A}}$	3	0
\mathcal{S}_B	4	0
$\mathcal{S}_{A/B}^{F}$	-	1
S_{C}	5	0
$\mathcal{S}^{F}_{AB/C}$	-	1
S_D	6	1
$\mathcal{S}^{\sf F}_{ABC/D}$	-	1
Total	18	4

• \mathcal{F}_{ABCD} : \mathbb{BI}

Hidden robot concept: simple examples 0000 Singularities of quadrotor formations

Case study

Conclusions O

Case studies with 18 drones

65 singularity conditions in total (some of them redundant):

- (1, 2, 3) or (8, 9, 10) or (13, 14, 15) or (13, 14, 15) or (4, 5, 6, 7) or (8, 9, 11, 12) or (9, 10, 11, 12) or (8, 10, 11, 12) *aligned*,
- $\mathbf{p}_{1,3}$ or $\mathbf{p}_{9,10}$ or $\mathbf{p}_{14,15}$ or $(\mathbf{p}_{4,5} \& \mathbf{p}_{4,7})$ or $(\mathbf{p}_{4,6} \& \mathbf{p}_{5,6})$ or $(\mathbf{p}_{5,7} \& \mathbf{p}_{6,7})$ or $(\mathbf{p}_{8,11} \& \mathbf{p}_{8,12})$ or $(\mathbf{p}_{9,10} \& \mathbf{p}_{10,12})$ or $(\mathbf{p}_{8,11} \& \mathbf{p}_{8,12})$ vertical
- lines trough (13, 18) & (14, 17) & (15, 16) *intersect* (in at least a point, possibly at infinity)
- ... (other conditions of the same type)
- (2, 3, 4, 5) or (13, 14, 15, 16, 17, 18) in *a common plane*
- ⇒ Possibility to create 65 singularity indices bounded between 0 and 1

Controller for rigidity maintenance

- Similar to [Zelazo et al RSS 2012] BUT with our singularity conditions
- {0-5} seconds: initial position to singularity position (Case 1)
- After 5 seconds: Use of controller for singularity free maintenance (Case 2)

Controller for rigidity maintenance

- Similar to [Zelazo et al RSS 2012] BUT with our singularity conditions
- {0-5} seconds: initial position to singularity position (Case 1)
- After 5 seconds: Use of controller for singularity free maintenance (Case 2)

Controller for rigidity maintenance

- Similar to [Zelazo et al RSS 2012] BUT with our singularity conditions
- {0-5} seconds: initial position to singularity position (Case 1)
- After 5 seconds: Use of controller for singularity free maintenance (Case 2)

duction	Hidden robot concept: simple examples	Singularities of quadrotor formations	Case study 00	Conclusions •
Cond	clusions			
• Hi	idden robot: a tool for singulari	ity analysis of rigidity matrices	5	

ase study

Conclusions

Conclusions

- Hidden robot: a tool for singularity analysis of rigidity matrices
- Problem complexity: not able to find all singularities
 - Many of them
 - $\circ~$ Design fleets for which all singularities are known

ase study

Conclusions

Conclusions

- Hidden robot: a tool for singularity analysis of rigidity matrices
- Problem complexity: not able to find all singularities
 - Many of them
 - $\circ~$ Design fleets for which all singularities are known
- Controller based on this analysis
 - Behave similarly as existing singularity-avoidance controller
 - BUT we gain an intrinsic comprehension of the physics of the system

