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Introduction Hidden robot concept: simple examples Singularities of quadrotor formations Case study Conclusions

The importance of rigidity

Rigidity of frameworks
◦ “Rigidity theory studies [...] whether two

frameworks with the same
inter-neighbor bearings have the
same shape” [Zhao & Zelazo IEEE
TAC 2016]

Framework singularities

◦ “A particular graph will be rigid or
flexible in Rn for almost all
locations of its vertices” [Asimow
& Roth TAMS 1978]
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same shape” [Zhao & Zelazo IEEE
TAC 2016]

Framework singularities
◦ “A particular graph will be rigid or

flexible in Rn for almost all
locations of its vertices” [Asimow
& Roth TAMS 1978]

Figure: A singularity of a 3-UAV formation

Figure: A singularity of a 4-UAV formation
[Pasquetti et al. CORR 2019]
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Singularities of formations

Singularities appearing in the bearing rigidity matrix
• a huge challenge

• Issues with singularities: loss of controllability, of accuracy, impossibility to use
pose estimation algorithms nearby

Determining the singularity cases stays an open problem
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Introduction
The “Hidden Robot Concept”: a tool for singularity analysis of rigidity matrices

• A tool made first for visual servoing problems [Briot et al IEEE TRO 2015, Briot
et al IEEE TRO 2017]

• Then transferred to the analysis of singularities of (bearing) rigidity matrices
[Briot & Robuffo Giordano ASME JMR 2019]

Basic idea
• The Inverse Jacobian matrix of a virtual parallel robot ⇒ a basis of the

Formation Rigidity Matrix
• Many tools for finding geometric configurations leading to singularities of line

systems: Screw Theory [Hunt book 1979], Grassmann geometry [Merlet IJRR
1989], Grassmann-Cayley algebra [Kanaan et al IEEE TRO 2009]
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Bidirectional bearing measurement in SE (2)
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A simple graph example
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1

ξ
1

ξ
2

We virtually open the mechanism in A3 + we fix
one prismatic joint to avoid the scaling translation

Chain A2A1A3
• A single twist $1 allowed in A3:

$1 = [pT
13 0]T translation along

−−−→
A1A3

• As a result, two wrenches constrain ξ1 and ξ2 the
motion at A3 (ξT

i $1 = 0)

ξ1 = [p⊥ T
13 0]T force along

−−−→
A1A3⊥

ξ2 = [0 0 1]T moment around z
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Chain A2A3
• Two twists $2 and $3 allowed in A3:

$2 = [pT
23 0]T translation along

−−−→
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$3 = [0 0 1]T rotation around z
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A simple graph example

A
1

A
2

A
3

A
1

A
2

A
3

ξ
3

ξ
1

ξ
2

At the end, mechanism constraint wrench system
W (≡ basis of the rigidity matrix)

W = [ξ1 ξ2 ξ3]

=
[
p⊥

13 p⊥
23 0

0 0 1

]

The system is rigid iff W is full rank
rank(W) = 3
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At the end, mechanism constraint wrench system
W (≡ basis of the rigidity matrix)

W = [ξ1 ξ2 ξ3]

=
[
p⊥

13 p⊥
23 0

0 0 1

]

W and and the rigidity matrix are singular when
locally, rank(W) < 3, i.e. when

• p13 is colinear with p23,
• In other words, when A1, A2, A3 are aligned.
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We virtually open the mechanism in A2 + we fix
one prismatic joint to avoid the scaling translation

Chain A3A1A2
• Two twists $1 and $2 allowed in A1:

$1 = [pT
12 0]T translation along

−−−→
A1A2

$2 = [0 0 1]T rotation around z

• or also at A2

ξ1 = [p⊥ T
12 (pT

12p12)]T
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$3 = [pT
32 0]T translation along
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$4 = [0 0 1]T rotation around z
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A second graph example
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At the end, mechanism constraint wrench system
W (≡ basis of the rigidity matrix)

W = [ξ1 ξ2]

W is of rank 2:
One unconstrained motion (in the nullspace of – or
reciprocal to – W)
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Hidden Robot and Singularity Analysis

Slides Julian Erskine
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Section 5: Formation Singularities The Hidden Robot

Strategy for a generalized singularity analysis

Objectives
7 Analyse all singularities

Analyse many singularities
Apply to many formations
Graph space results

What does this do ?
Can we find all SL ?

Can we find all SF ?

Is SL ∪ SF comprehensive ?

Local analysis
Apply to each agent A

i
Assume all agents are fixed

A
i

Figure 5.9 – Local neighbourhood of Ai

SL
i

: Set of embeddings where
A

i
moves wrt others

Subformation analysis
Bi-partition the formation
Assume one partition fixed

F
1

F
2

Figure 5.10 – Subformations F1 and F2

SF : Set of embeddings where
F
1
moves wrt F

2
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Section 5: Formation Singularities Local Singularities

Graph edge primitives
Apply mechanical constraints to graph edges

Out edge O

i j

Figure 5.11 – O edge

2 free DOF
4 constrained DOF

In edge I

i j

Figure 5.12 – I edge

2 free DOF
4 constrained DOF

Bi-direction edge B

i j

Figure 5.13 – B edge

1 free DOF
5 constrained DOF
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Section 5: Formation Singularities Local Singularities

Local singularities - two neighbours

Building a singularity dictionary
Find local graph types
Analyse the 6 hidden robots
Use set-based analysis (e.g. SL

BO
⊃ SL

BB
)

i
j

k

(a) Local type BB

i
j

k

(b) Local type BO

i
j

k

(c) Local type BI

i
j

k

(d) Local type OO

i
j

k

(e) Local type IO

i
j

k

(f) Local type II

Figure 5.14 – All local formations with two neighbours
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Section 5: Formation Singularities Local Singularities

Local singularities - two neighbours

Building a singularity dictionary
Find local graph types
Analyse the 6 hidden robots
Use set-based analysis (e.g. SL

BO
⊃ SL

BB
)

Table 3 – Singularities for of Ai connected to agents Aj and Ak

Type Wrenches Singular Configuration SLtype Singular Twist TLtype
LBB WBj ∪WBk 1. SLBB 1. TLBB (see Eq. (??))

LBO WBj ∪WOk 1. SLBB 1. TLBB

LBI WBj ∪WIk
1. SLBB
2. pij is vertical

1. TLBB
2. vr(z0, pi )

LOI WOj ∪WIk
1. SLBI
2. pij and pik are horizontal

1. TLBI
2. vr(z0, c)

LOO WOj ∪WOk

1. SLBO
2. pij and pik are horizontal
3. pjk is vertical

1. TLBO
2. vr(z0, c)
3. vr(z0, pj )

LII WIj ∪WIk
1. SLBI
2. All configurations

1. TLBI
2. vr(z0, pi )

i
j

k

(a) Local type BB

i
j

k

(b) Local type BO

i
j

k

(c) Local type BI

i
j

k

(d) Local type OO

i
j

k

(e) Local type IO

i
j

k

(f) Local type II

Figure 5.15 – All local formations with two neighbours
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Section 5: Formation Singularities Local Singularities

Local singularities - n neighbours

Generalization of local analysis
Infinite number of local hidden robots
More measurements increases constraints
There is a closed set of local singularities

Singularities of all local formations of type
BaObIc where a + b + c ≥ 3

1 All edges are co-linear
2 Only I edges are non-vertical

Singularities of local formations of type Ob

3 A
i
and A

1
· · · A

m
lie on a horizontal circle

4 Agents A
1
· · · A

m
lie on a vertical line.

x

z

y

F0

(a) Type 1

x

z

y

F0

(b) Type 2

x

z

y

F0

(c) Type 3

x

z

y

F0

(d) Type 4

Figure 5.18 – All local singularities and singular motions
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Section 5: Formation Singularities Subformation Singularities

Subformation singularities - two edges

Local analysis is not enough
Sufficient to imply flexibility
Insufficient to imply rigidity

Figure 5.19 – No local singularities (4× SLBB) but is clearly singular

Subformation singularities
Assume both subformations are rigid

Fix one subformation
Other is free in translation, yaw, scale

Difficult compared to local analysis
J. Erskine PhD Thesis Defence 03/12/2021 44 / 51



Section 5: Formation Singularities Subformation Singularities

Subformation singularities - two edges

Local analysis is not enough
Sufficient to imply flexibility
Insufficient to imply rigidity

Figure 5.19 – No local singularities (4× SLBB) but is clearly singular

Subformation singularities
Assume both subformations are rigid

Fix one subformation
Other is free in translation, yaw, scale

Difficult compared to local analysis

(a) FBB (b) FBO

Figure 5.20 – Two subformations FA and FB connected by two
distinct graph edges
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Hidden Robot and Singularity Analysis
Table: Classification of all bi-partitioned subformation singularities with two edges

Type Singular Configuration SF
type

BB 1: Lines A1B1 and A2B2 intersect
2: Lines A1B1 and A2B2 are colinear
3: Lines A1B1 and A2B2 are vertical and superposed

BO 1: SF
BB

2: Line A1B1 is vertical and intersects B2

10 of 15



Section 5: Formation Singularities Subformation Singularities

Subformation singularities - three edges

Subformation we can solve
Contains F

BB
or F

BO
as subset

Can find all singularities

Subformation we cannot solve
F

OOO
and F

IOO

Can find some singularities
Cannot show that there are not others

F
B

F
A

(a) F
BBB

F
B

F
A

(b) F
OBB

F
B

F
A

(c) F
OOB

F
B

F
A

(d) F
IOB

F
B

F
A

(e) F
IOO

F
B

F
A

(f) F
OOO

Figure 5.21 – All three-edge subformations. Prismatic joints
containing a circle have coupled twist magnitudes.
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Hidden Robot and Singularity Analysis
Table: Classification of all bi-partitioned subformation singularities with two edges

Type Singular Configuration SF
type

BBB 1: All lines AiBi intersect 2: All lines AiBi are colinear
3: All lines AiBi vertical, superposed

OBB 1: SF
BBB 2: B3 aligned with A1B1, AiBi , i ∈ 2, 3 superposed

OOB 1: SF
OBB 2: Line A3B3 vertical, intersects B1 or B2

IOB 1: SF
OBB 2: Line A3B3 vertical, intersects A1 and B2

IOO 1: SF
IOB 2: A1 B2 B3 aligned and vertical

3: All agents Ai , Bi ∀i lie on a common horizontal plane
OOO 1: SF

OOB 2: Bi∀i are vertical superposed
3: All agents Ai , Bi ∀i lie on a common horizontal plane
4: FA and FB are bearing-congruent and lie on their common respective horizontal planes.

11 of 15
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Hidden Robot and Singularity Analysis
With this analysis

• Able to analyze many singularities in a formation

• Impossible to analyze all singularities for a given arbitrary formation
• BUT possibility to analyze all singularities of properly designed formations

◦ simple small sub-formations in which we can easily know all singularities

◦ associated together with 2 or 3 edges in order to form big-sized graphs

12 of 15
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Case studies with 18 drones
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Case studies with 18 drones

F
A

F
B

F
C

F
D

1

23

4 5

67

8

9

1011

12

13 14

15

1617

18

Component # of SL # of SF

SA 3
SB 4
SF

A/B -
SC 5
SF

AB/C -
SD 6
SF

ABC/D -
Total 18

• FA: BB, BO, BI
• FB: BOI × 3, BBB
• FC : BOI × 3, OII, BO
• F∗

D: BB × 4, BO, BI
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Case studies with 18 drones

F
A

F
B

F
C

F
D

1

23

4 5

67

8

9

1011

12

13 14

15

1617

18

65 singularity conditions in total
(some of them redundant):

• (1, 2, 3) or (8, 9, 10) or (13, 14, 15) or (13,
14, 15) or (4, 5, 6, 7) or (8, 9, 11, 12) or (9,
10, 11, 12) or (8, 10, 11, 12) aligned ,

• p1,3 or p9,10 or p14,15 or (p4,5 & p4,7) or (p4,6
& p5,6) or (p5,7 & p6,7) or (p8,11 & p8,12) or
(p9,10 & p10,12) or (p8,11 & p8,12) vertical

• lines trough (13, 18) & (14, 17) & (15, 16)
intersect (in at least a point, possibly at
infinity)

• ... (other conditions of the same type)
• (2, 3, 4, 5) or (13, 14, 15, 16, 17, 18) in a

common plane
⇒ Possibility to create 65 singularity indices

bounded between 0 and 1
13 of 15
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Controller for rigidity maintenance
• Similar to [Zelazo et al RSS 2012] BUT with our singularity conditions
• {0-5} seconds: initial position to singularity position (Case 1)
• After 5 seconds: Use of controller for singularity free maintenance (Case 2)
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Controller for rigidity maintenance
• Similar to [Zelazo et al RSS 2012] BUT with our singularity conditions
• {0-5} seconds: initial position to singularity position (Case 1)
• After 5 seconds: Use of controller for singularity free maintenance (Case 2)
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Conclusions
• Hidden robot: a tool for singularity analysis of rigidity matrices

• Problem complexity: not able to find all singularities

◦ Many of them

◦ Design fleets for which all singularities are known

• Controller based on this analysis

◦ Behave similarly as existing singularity-avoidance controller

◦ BUT we gain an intrinsic comprehension of the physics of the system

15 of 15



Introduction Hidden robot concept: simple examples Singularities of quadrotor formations Case study Conclusions

Conclusions
• Hidden robot: a tool for singularity analysis of rigidity matrices
• Problem complexity: not able to find all singularities

◦ Many of them

◦ Design fleets for which all singularities are known

• Controller based on this analysis

◦ Behave similarly as existing singularity-avoidance controller

◦ BUT we gain an intrinsic comprehension of the physics of the system

15 of 15



Introduction Hidden robot concept: simple examples Singularities of quadrotor formations Case study Conclusions

Conclusions
• Hidden robot: a tool for singularity analysis of rigidity matrices
• Problem complexity: not able to find all singularities

◦ Many of them

◦ Design fleets for which all singularities are known

• Controller based on this analysis
◦ Behave similarly as existing singularity-avoidance controller

◦ BUT we gain an intrinsic comprehension of the physics of the system

15 of 15


	Main Part
	Introduction
	plo

	Hidden robot concept: simple examples
	plo

	Singularities of quadrotor formations
	plo

	Case study
	plo

	Conclusions
	plo


	JulianDefence.pdf
	Main
	Development of SOVS Controller
	Model Predictive Formation Control
	Comparison of Controllers
	Formation Singularities
	Conclusion
	Références
	Figure References

	Annexe
	Appendix 1 - UAVs Simulations and Experiments
	Appendix 2 - Bearing Measurements
	Appendix 3 - MPC
	Appendix 4 - Singularities





